Jiaqing (Allen) Liu

Research Interests

Wearable & Ubiquitous Computing, Human-Computer Interaction

Education

University of Notre Dame

Notre Dame, IN

PhD in Computer Science & Engineering

2025 - Present

Advisor: Dr. Tinguu Cheng

University of Washington

Seattle, WA

MS in Electrical & Computer Engineering

2023 - 2025

Advisor: Dr. Shwetak Patel

Southwest Jiaotong University

Chengdu, China

 $BEng\ in\ Biomedical\ Engineering$

2019 - 2023

Advisor: Dr. Weili Deng

Publications

[2] ECG Necklace: Low-power Wireless Necklace for Continuous ECG Monitoring

Qiuyue (Shirley) Xue, Eric Martin, <u>Jiaqing Liu</u>, Ruiqing Wang, Antonio Glenn, Richard Li, Vikram Iyer, and Shwetak Patel

Proceedings of the ACM CHI Conference on Human Factors in Computing Systems (CHI '25)

[1] Recent Progress in Flexible Piezoelectric Devices toward Human-machine Interactions

Jiaqing Liu, Guo Tian, Weiqing Yang, and Weili Deng

Soft Science, 2(4), 22. (2022)

Highlight Article

Research Experience

Ubiquitous Computing Lab, University of Washington

Apr. 2024 – Apr. 2025

Graduate Researcher Advisor: Dr. Shwetak Patel

- Continuous Blood Pressure (BP) Monitoring via Smart Jewelry Network

- Developing a compact wearable photoplethysmogram (PPG) sensing network embedded in earrings and rings for passive, longitudinal BP monitoring using pulse transit time (PTT).
- Creating firmware to achieve precise wireless time synchronization across multiple Nordic nRF52 devices, achieving an accuracy within 20 μ s.
- Designing algorithms to compute PTT from synchronized PPG data and model BP fluctuations.
- Low-power Wireless Necklace for Continuous ECG Monitoring
 - Contributed to the development of a light-weight, low-power necklace for continuous ECG monitoring.
 - Designed signal processing algorithms to filter motion artifacts, extract seismocardiography (SCG) and respiratory patterns from IMU signals, and compute key ECG intervals.
 - Evaluated signal validity by calculating peak-SNR and timing errors against FDA-approved wearables.

- PiezoTouch: Self-powered Tactile Sensing with Stretchable Piezo-ionic Hydrogels

- Developed a self-powered, flexible hydrogel sensor capable of generating 25.74 mV upon touch and stretching to 378% of its original length.
- Fabricated 15+ device groups and holistically analyzed their material, mechanical and electrical properties.
- Evaluated dynamic response and spatial localization during finger-press tests for potential wearable use.

- DiaperSense: Incontinence Detection with Paper-based Humidity Sensors

- Developed a smart diaper system with novel, sustainable paper-based humidity sensors, custom PCB, and ESP32 for wireless incontinence monitoring in Alzheimer's patients.
- Trained and compressed a neural network model, achieving 93.82% accuracy in detecting incontinence events.
- Designed an app to display real-time sensor data and notify caregivers, helping prevent skin issues for wearers.

- On-Skin Motion Sensing Interface using Soft Materials

- Designed wearable piezoelectric nanosensors for gait analysis and gesture recognition.
- Researched applications of flexible piezoelectric devices in physiological monitoring and interactive systems.

Engineering Projects

Sickle Cell Disease (SCD) Physician Chatbot (Sponsored by Novo Nordisk)

June 2024

Sept. 2021 – June 2023

- Developed a mobile chatbot to provide ER physicians with quick access to SCD clinical treatment guidelines.
- Utilized GPT-3.5 Turbo API, LangChain, and AWS to build a fast, scalable model for medical data embedding and retrieval.
- Collaborated with physicians and Novo Nordisk teams to enhance chatbot accuracy and usability.

CheerUp: Emotion-driven Music Recommendation System for Mental Well-being

Mar. 2024

- Designed a Raspberry Pi system with a camera to enhance users' mental well-being by capturing real-time facial expressions and automatically playing adaptive music.
- Deployed a pre-trained CNN with OpenCV for emotion recognition, optimized for embedded systems.

OxyBand: SpO₂ Monitoring Wristband

Jan. 2021

• Developed a wearable PPG-based oximeter wristband using MSP430 and MAX30102 sensor for real-time SpO₂ monitoring, enabling hypoxemia detection and alerts.

Technical Skills

Languages: Python, C/C++, MATLAB, Java, SystemVerilog, LabVIEW

Software: Digital Signal Processing, Mobile Development, ROS, Linux, Machine Learning

Hardware/Prototyping: PCB Design, FPGA Design, SolidWorks, Soldering, Laser Cutting, 3D Printing,

Flexible Electronic Materials and Devices (Design, Fabrication and Testing)

Embedded Systems: Arduino, Nordic nRF52, I2C, SPI, UART, BLE

Honors & Services

SWJTU K-12 Outreach Program, Volunteer

2021

SWJTU Academic Excellence Scholarship

2020, 2021